

Contents

- A. BGP at a high level
 - 1. Inter-Domain Routing
 - 2. Policy Routing
- B. BGP in detail
 - 1. How it works
 - 2. Aggregation
 - 3. Interaction BGP—IGP—Packet Forwarding
 - 4. Other Attributes
 - 5. Bells and Whistles
 - 6. Security of BGP
- C. Illustrations and Statistics

Recall: routing algorithms differ in at least 3 aspects

Nature of "best" path — i.e. what is optimization objective of an algorithm?

- to use shortest path
- to use equal-cost multi-path
- to respect policies
- arbitrary

Scope of network — i.e. what is the underlying network? is topology info available?

- single domain —> intra-domain routing (main alg. is OSPF)
- multiple domains —> *inter-domain* routing (main alg. is BGP)

A domain is a network under the same administrative entity (e.g. a campus network, an enterprise network, or an ISP, etc.)

State location — i.e. where is the output (i.e. the routing information) finally stored?

- inside a local forwarding table
- directly into the packet headers

Recall: BGP is an example of path vector routing

Path Vector

- Every router knows only:
 - its neighbors +
 - explicit *paths* to all destinations
- Optimization criterion is not only cost
- Typically used for inter-domain routing, where it is hard to assign costs
 - e.g. BGP computes domain-level paths
 - and each router selects best path to each destination according to multiple criteria
 - and populates forwarding table

Part A: BGP at high level

1. Inter-Domain Routing

Context

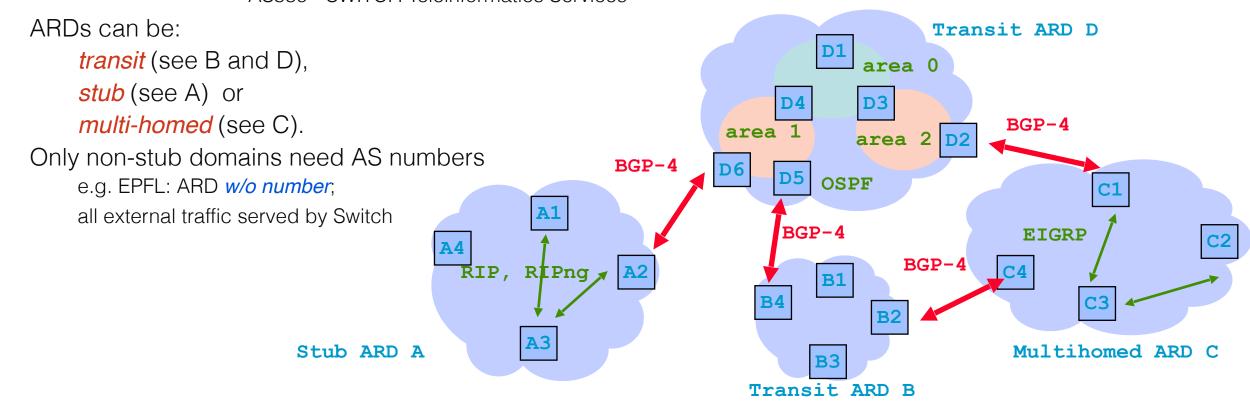
The Internet is *too large* + *heterogeneous* (i.e. it is split into multiple different domains) to be run by one routing protocol.

We use hierarchical routing instead:

- between domains, we use BGP (= Border Gateway Protocol)
- within domains, we use an IGP (= Internal Gateway Protocol), e.g. RIP, OSPF (standard), IGRP (Cisco) with OSPF: large domains are further split into Areas

What is the goal of BGP?

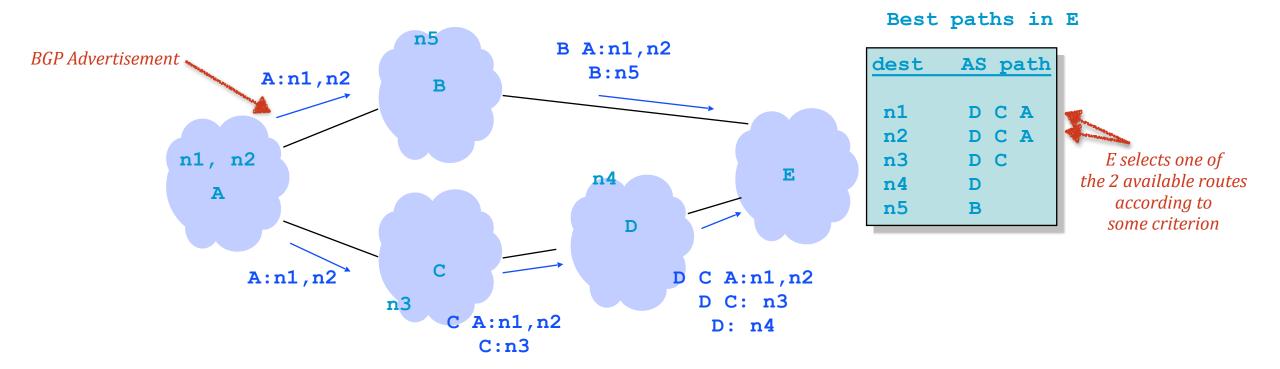
- Compute paths from a border router in one domain to any network prefix in the world
- Handle both IPv4 and IPv6 addresses in a single process


How does it achieve it? via path-vector routing and policies

Domains — terminology

ARD = Autonomous Routing Domain = routing domain under a single administrative entity

AS = Autonomous System = ARD with a number ("AS number")


- AS number is 32 bits, written in 2-field dotted decimal notation: e.g. 23.3456, and leading zeros may be omitted: e.g. 0.559 means 559
- Private AS numbers are: 0.64512 0.65535
- Real examples: AS1942 CICG-GRENOBLE, AS2200 Renater AS559 SWITCH Teleinformatics Services

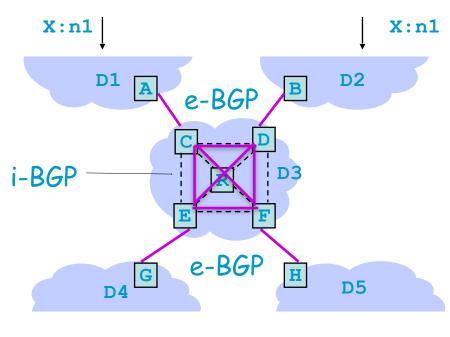
Path Vector Routing (high-level example)

Goal: To compute best AS-level routes/paths.

How? ASes *advertize* to their neighbor ASes their *best routes* to destinations, by *prepending* its AS number to the routes they exports. Each AS uses its *own criteria* for deciding which path is the best.

Not all routers run BGP

A router that runs BGP is called a *BGP speaker*


- at the border between 2 ARDs, there are 2 speakers, one in each ARD
- inside an ARD, there are usually several BGP speakers

BGP speakers speak over *TCP* connections:

- externally (e-BGP)
 to advertize routes to neighbor domains [as in previous slide]
- internally (i-BGP)
 to exchange what they have learnt from e-BGP

In i-BGP, BGP peers

- communicate via a mesh network, called "BGP mesh"
- do the same as in e-BGP but they do *not*:
 - repeat the routes learnt from i-BGP —> to avoid redundant traffic
 - prepend own AS number over i-BGP
 - modify the "NEXT-HOP" attribute of a route [see also later]
- know about all inter-domain link subnets via IGP

Say what is always true

- A. 1
- B. 2
- C. 1 and 2
- D. None
- E. I don't know

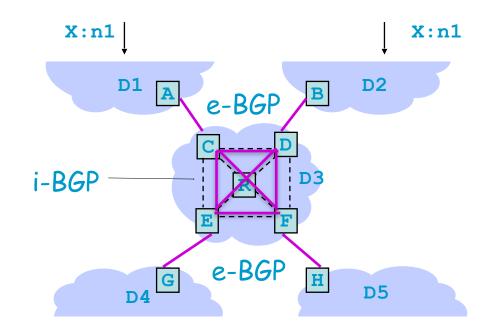
- 1. Two BGP peers must be connected by a TCP connection.
- 2. Two BGP peers must be "on link" (on the same subnet)

Go to web.speakup.info or download speakup app Join room 46045

Solution

Answer A

BGP peers communicate (typically) with TCP.


External peers are typically "on link".

Internal peers need not be "on link".

Which BGP updates may be sent?

- A. 1
- B. 2
- C. 3
- D. 1 and 2
- E. 1 and 3
- F. 2 and 3
- G. All
- H. None
- I. I don't know

- 1. $C \rightarrow A : D3 D2 X : n1$
- 2. $D \rightarrow E:D2 X:n1$
- 3. $C \rightarrow E:D2 X:n1$

BGP sessions over TCP connections

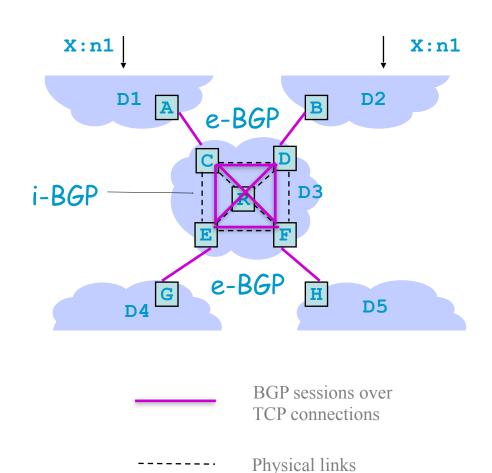
Physical links

Go to web.speakup.info

or

download speakup app Join room 46045

Solution


- 1. $C \rightarrow A : D3 D2 X : n1$
- 2. $D \to E : D2 X : n1$
- 3. $C \rightarrow E:D2 X:n1$

Answer D.

The route $C \to E: D2-X:n1$ was learnt by C from D, i.e. via internal BGP (i-BGP).

Therefore it should *not be re-advertized* over i-BGP. There is no need since all other routers inside the domain have learnt this route from D.

Only routes 1 and 2 should be repeated.

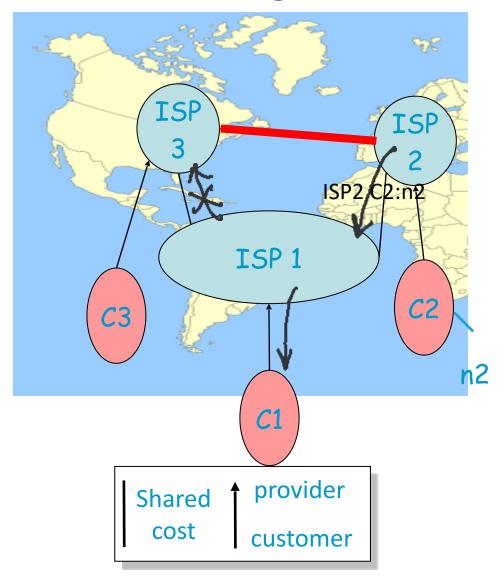
2. Policies

Context

Self-organized interconnection of ASs (= peering) —> free market

- point to point links between networks: e.g., EPFL to Switch, Switch to Telianet
- interconnection points: all participants run a BGP router in the same LAN.
 NAP (Network Access Point), MAE (Metropolitan Area Ethernet), CIX (Commercial Internet eXchange), GIX (Global Internet eXchange), IXP, SFINX, LINX...

Various financial relationships:


- customer-provider (hierarchy): e.g. EPFL is customer of Switch—EPFL pays Switch
- shared-Cost peers (same level): e.g. Swisscom and Switch are peers; they collaborate
 to serve their customers, typically without paying each other
- also many other, depending on (private) business agreements

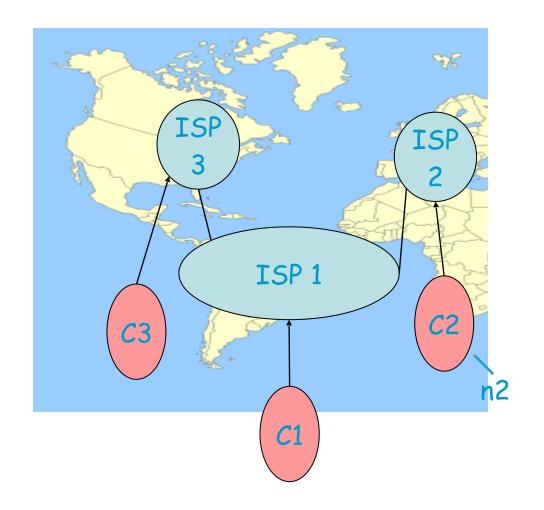
Policy rules...

```
...implement such relations & business agreements via:
```

import (what to accept) and export rules (what to advertize?), and a decision process

Policies (high-level example)

Suppose:


- All ISPs are shared-cost peers; Ci is customer of ISPi.
- ISP3-ISP2 is a transatlantic link, cost-shared between ISP2 & ISP3, but it is expensive;
- ISP3-ISP1 is a local, inexpensive link;
- Problem: It is advantageous for ISP3 to send traffic to n2 via ISP1; but...
 ISP1 may not agree to carry traffic from C3 to C2.
 How can ISP1 apply such a *policy*:
 - "transit service" to C1 and
 - "non-transit" service to ISP2 & ISP3?

A common policy rule is:

"Routes learnt from peers or providers are not advertized to peers or providers."

Applying this to our example:

- ISP1 advertizes the route: {ISP2 C2:n2} to C1
- but not to ISP3
 because doing so would allow ISP3 to find a route to C2 that transits
 via ISP1


ISP1-ISP2 and ISP1-ISP3 are peers; ISP2-ISP3 are *not* peers nor customers/providers. All apply the rule "Routes coming from peers or providers are not propagated to peers or providers". What is a valid path from C2 to C3?

- A. C2-ISP2-ISP1-ISP3-C3
- B. None
- C. I don't know

Go to web.speakup.info or download speakup app Join room 46045

Solution

Answer B

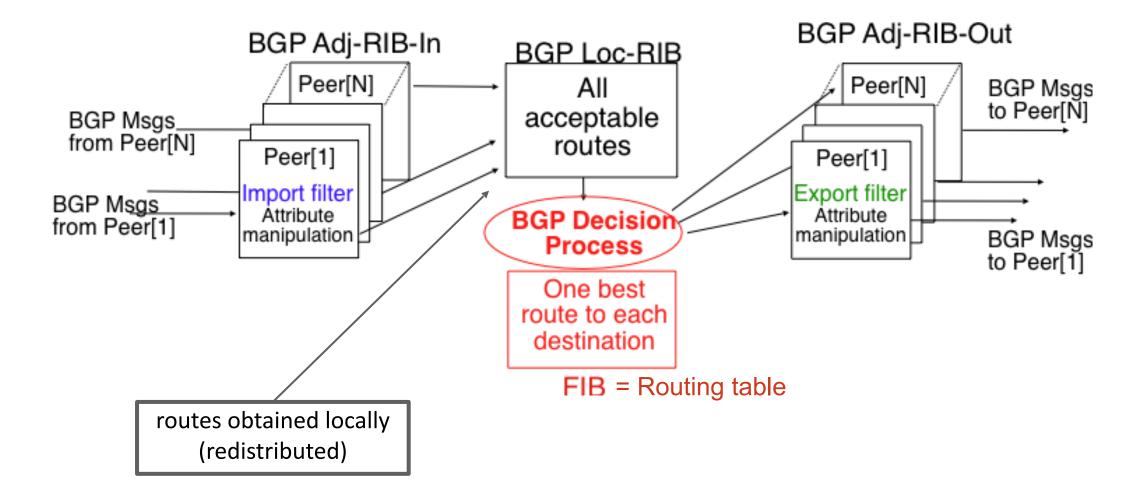
ISP1 learns the route ISP1-ISP2-C2-n2 but refuses to announce it to ISP3 (who is a peer)

this network is partitioned!

Solution: internet backbone providers (eg. AT&T, OpenTransit, Orange etc, called tier-1):

must all exchange traffic with each other

and

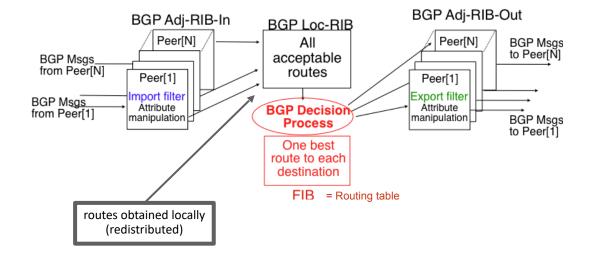

all ISPs need to be connected to a tier-1

Part B.

1. How does BGP work?

- [Recall:] BGP routers talk to each other over TCP connections
- Each BGP router [BGP-4, RFC 4271]:
 - receives and stores candidate routes from its BGP neighbor peers, after applying import policy rules
 - applies the decision process to *select at most one route* per destination prefix
 - exports the selected routes to BGP neighbors,
 after applying export policy rules and possibly aggregation
- Routes are advertized via UPDATE messages that contain only modifications: additions/withdrawals
- Other BGP messages are: OPEN, NOTIFICATION (= RESET), KEEPALIVE
- [Also recall:] routers advertize to an i-BGP neighbor only routes learnt from e-BGP

Model of a BGP Router


Routes, RIBs, Routing Table

An *advertized route* contains:

- destination (subnetwork prefix)
- path to the destination (AS-PATH or an authenticated BGPsec_Path)
- NEXT-HOP (modified by e-BGP, left unchanged by i-BGP)
- Origin: route learnt from IGP, BGP, static
- Other attributes:

LOCAL-PREF, ATOMIC-AGGREGATE

(= route cannot be dis-aggregated), MED, etc. [see later]

Routes + their attributes are stored in the Routing Information Bases (RIBs):

Adj-RIB-in, Loc-RIB, Adj-RIB-out.

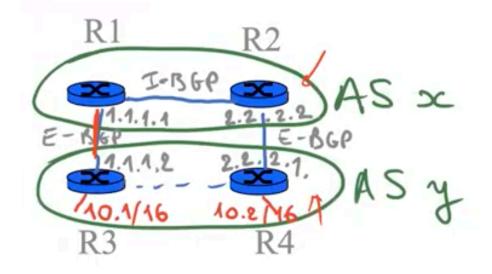
Like any IP host or router, a BGP router also has a Routing Table = IP forwarding table Used for packet forwarding, in real time

The Decision Process

The decision process chooses *at most one route* to each different destination prefix as *best*

e.g.: only one route to 2.2/16 can be chosen but there can be different routes to 2.2.2/24 and 2.2/16

How?


- A route can be selected only if its next-hop is reachable
- Routes' attributes are compared against each other using a sequence of criteria, until only one route remains.
 A common sequence is:
 - 0. Highest weight (Cisco proprietary)
 - 1. Highest LOCAL-PREF
 - 2. Shortest AS-PATH
 - 3. Lowest MED, if taken seriously by this network
 - 4. e-BGP > i-BGP (= if route is learnt from e-BGP, it has priority)
 - 5. Shortest path to NEXT-HOP, according to IGP
 - 6. Lowest BGP identifier (router-id of the BGP peer from whom route is received) (The Cisco and FRR implementation of BGP, used in lab 6, have additional cases, not shown here)

BGP Adj-RIB-Out BGP Adj-RIB-In BGP Loc-RIB Peer[N] Peer[N] **BGP Msgs** to Peer[N] BGP Msgs acceptable from Peer[N] routes Peer[1] Peer[1] mport filter Export filter BGP Msgs Attribute **BGP Decision** Attribute from Peer[1] manipulation manipulation 🗌 **BGP Msgs Process** to Peer[1] One best route to each destination FIB = Routing table routes obtained locally (redistributed)

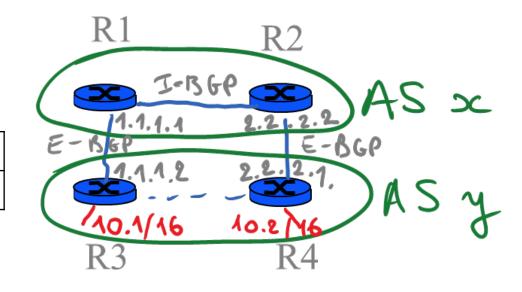
The result of the decision process is stored in Adj-RIB-out (one route per destination for each BGP peer) and the router sends updates when Adj-RIB-out changes (addition or deletion) after applying export rules.

Fundamental Example

- 4 BGP routers communicate directly (solid lines) or indirectly (dash lines) via e-BGP or i-BGP,
- 2 ASes, x and y, each one running its own IGP, too.
- Assume R3 and R4 are configured to advertise both prefixes of y.

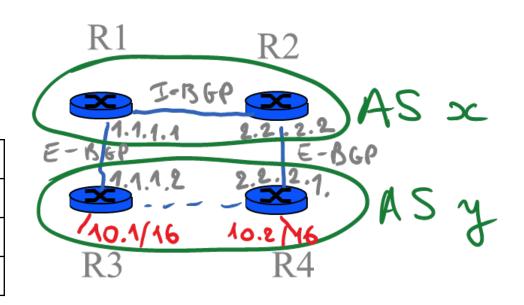
→ We focus on R1 and show its BGP information:

Remarks:


- we show next only a subset of the route attributes (such as : destination, path, NEXT-HOP)
- the exact internal topology of y is not shown

R3—> R1 10.1/16 AS = y 10.2/16 AS=y Adj-RIB-in

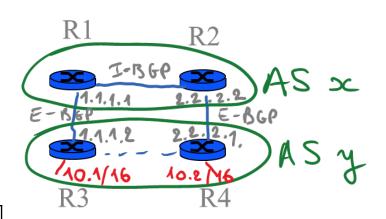
From R3	10.1/16 AS =y NEXT-HOP=1.1.1.2	Best
From R3	10.2/16 AS =y NEXT-HOP=1.1.1.2	Best



To R2	10.1/16 AS = y NEXT-HOP=1.1.1.2
To R2	10.2/16 AS = y NEXT-HOP=1.1.1.2

- [import filters:] R1 accepts the updates and stores them in Adj-RIB-In
- [Decision Process:] R1 designates these routes as best routes
- [export filters:] R1 puts updates into Adj-RIB-Out, which will cause them to be sent to other BGP neighbors/peers

From R3	10.1/16 AS =y NEXT-HOP=1.1.1.2	Best
From R2	10.1/16 AS =y NEXT-HOP=2.2.2.1	
From R3	10.2/16 AS =y NEXT-HOP=1.1.1.2	Best
From R2	10.2/16 AS =y NEXT-HOP=2.2.2.1	


Which of the two new routes (in red) are promoted by the decision process to "best routes" assuming WEIGHT, LOCAL PREF and MED are empty?

- A. The first one only
- B. The second one only
- C. Both
- D. None
- E. I don't know

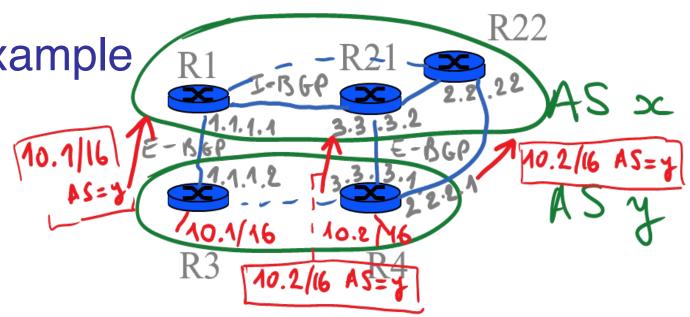
- Highest weight (Cisco proprietary)
- 1. Highest LOCAL-PREF
- 2. Shortest AS-PATH
- 3. Lowest MED, if taken seriously by this network
- 4. E-BGP > I-BGP
- 5. Shortest path to NEXT-HOP, according to IGP
- 6. Lowest BGP identifier (router-id of the BGP peer from who (The Cisco and FRR implementation of BGP, used in lab 6, have addition

$R2 \longrightarrow R1$ 10.1/16 AS =y NEXT-HOP = 2.2.2.1 10.2/16 AS=y NEXT-HOP = 2.2.2.1 Adj-RIB-in

From R3	10.1/16 AS =y NEXT-HOP=1.1.1.2	Best
From R2	10.1/16 AS =y NEXT-HOP=2.2.2.1	
From R3	10.2/16 AS =y NEXT-HOP=1.1.1.2	Best
From R2	10.2/16 AS =y NEXT-HOP=2.2.2.1	

Answer D

R1 applies again its decision process. Now it has several possible routes to each prefix.


The first applicable rule in the decision process (slide "The Decision Process") says that if a route is learnt from e-BGP it has precedence over a route learnt from i-BGP (e-BGP > i-BGP).

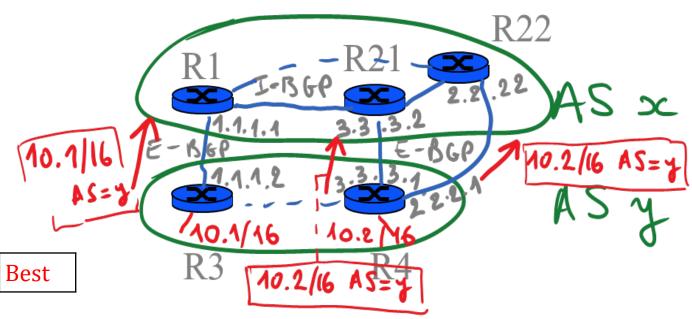
Since all routes in Adj-RIB-In from R2 are learnt from i-BGP, and all routes in Adj-RIB-In from R3 are learnt from e-BGP, the winners are the latter, so there is no change.

Since there is no change in Loc-RIB there is no change in Adj-RIB-Out and therefore no message is sent by R1.

Another Fundamental Example

- 3 BGP routers in AS x.
- An IGP (e.g. OSPF) also runs on R1, R21 and R22.
- Assume:
 - all link costs are equal to 1.
 - R3 and R4 advertise only their directly attached prefixes, as shown in the figure.

→ We focus on R1 and show its BGP information:


Note:

The 3 BGP in AS x routers must have TCP connections with each other (same in AS y, but not shown on figure).

10.1/16 AS =y NEXT-HOP=1.1.1.2 From R3

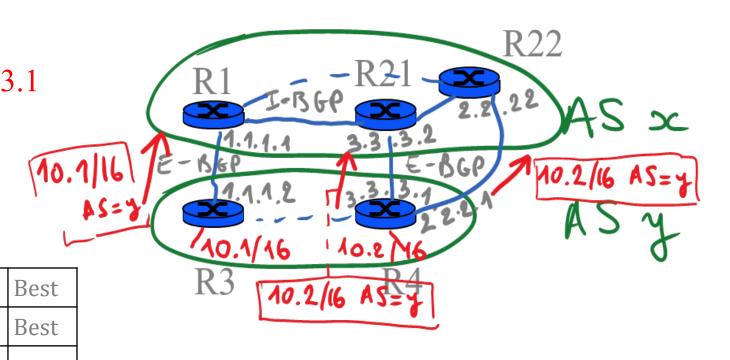
Adj-RIB-out

To R21	10.1/16 AS =y NEXT-HOP=1.1.1.2
To R22	10.1/16 AS =y NEXT-HOP=1.1.1.2

- R1 accepts the updates and stores it in Adj-RIB-In
- R1 designates this route as best route
- R1 puts route into Adj-RIB-Out, which will cause them to be sent to BGP neighbors R21 and R22

From R3	10.1/16 AS =y NEXT-HOP=1.1.1.2	Best
From R22	10.2/16 AS =y NEXT-HOP=2.2.2.1	Best

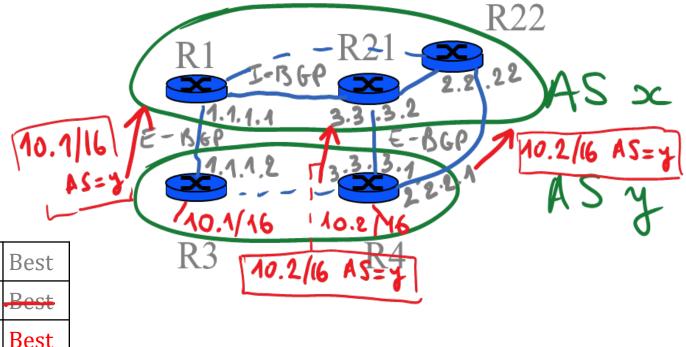
Adj-RIB-out


To R21	10.1/16 AS =y NEXT-HOP=1.1.1.2
To R22	10.1/16 AS =y NEXT-HOP=1.1.1.2

- R1 accepts the updates and stores it in Adj-RIB-In
- R1 designates this route as best route
- R1 does not put route into Adj-RIB-Out to R21 because i-BGP is not repeated over i-BGP R1 does not put route into Adj-RIB-Out to R3 this would create an AS-path loop

From R3	10.1/16 AS =y NEXT-HOP=1.1.1.2	Best
From R22	10.2/16 AS =y NEXT-HOP=2.2.2.1	Best
From R21	10.2/16 AS =y NEXT-HOP=3.3.3.1	

Will the decision process promote the new route to "best route" assuming that WEIGHT, LOCAL PREF, MED are empty?

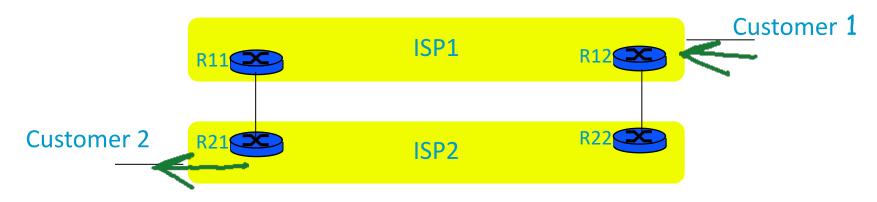

- A. Yes
- B. No, the route is worse
- C. No, it will keep both routes
- D. I don't know

- 0. Highest weight (Cisco proprietary)
 - 1. Highest LOCAL-PREF
 - 2. Shortest AS-PATH
 - 3. Lowest MED, if taken seriously by this network
 - 4. E-BGP > I-BGP
 - 5. Shortest path to NEXT-HOP, according to IGP
 - 6. Lowest BGP identifier (router-id of the BGP peer from whom ro (The Cisco and FRR implementation of BGP, used in lab 6, have additional ca

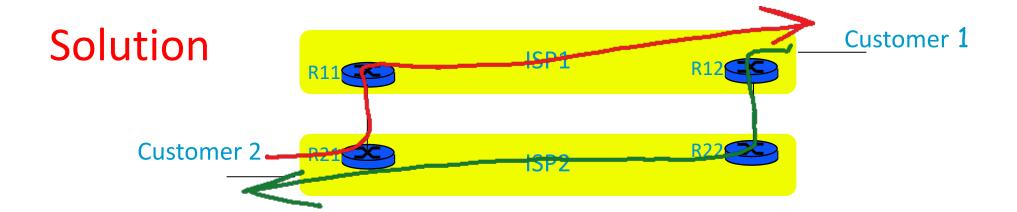
Solution

From R3	10.1/16 AS =y NEXT-HOP=1.1.1.2	Best
From R22	10.2/16 AS =y NEXT-HOP=2.2.2.1	Best
From R21	10.2/16 AS =y NEXT-HOP=3.3.3.1	Best

Answer A


The decision process now has to choose between two routes with same destination prefix 10.2/16. Both were learnt from i-BGP, so we apply criterion 5 in slide "The Decision Process".

The distance, computed by the IGP, to 2.2.2.1 is \geq 3 and the distance to 3.3.3.1 is 2.


Thus the route that has NEXT-HOP=3.3.3.1 is preferred by the decision process, i.e. the new route is designated as "best".

The new route is not put into Adj-RIB-Out for the same reasons as at step 2.

ISP1 and ISP2 are shared cost peers. Which path will be used by packets Customer 1→ Customer 2?

- A. R12-R11-R21
- B. R12-R22-R21
- C. It depends on the configuration of BGP at ISP1 and ISP2
- D. Both in parallel
- E. I don't know

Answer C: It depends on the configuration.

If configuration in both ISPs is as in "Fundamental Example", Customer 1 → Customer 2 uses R12-R22-R21 ("Hot potato routing"), but if the configuration is as in "Another Fundamental Example", the other route is used ("Cold potato routing")

If both ISPs do hot potato routing, Customer 2 → Customer 1 uses R21-R11-R12: routing in the global internet may be *asymmetric*!